To investigate the CT findings and differential diagnosis in adults with invasive pulmonary aspergillosis among the population group and compare it with other traditional techniques to explore whether it can serve as a better tool. A Expenses for all prescribed medicines initially purchased or otherwise obtained during 1997, as well as any refills, are included. Free samples are included in the estimate of percent of persons with any expense. B Private insurance includes CHAMPUS and CHAMPVA (Armed-Forces-related coverage).
Recommendations for classification of AS severity[]
Aortic sclerosis
Mild
Moderate
Severe
Aortic jet velocity (m/s)
≤2.5 m/s
2.6-2.9
3.0-4.0
>4.0
Mean gradient (mmHg)
-
<20 (<30a)
20-40b (30-50a)
>40b (>50a)
AVA (cm2)
-
>1.5
1.0-1.5
<1
Indexed AVA (cm2/m2)
>0.85
0.60-0.85
<0.6
Velocity ratio
>0.50
0.25-0.50
<0.25
aESC Guidelines.[]
bAHA/ACC Guidelines.[]
Aortic regurgitation - severity
Application of specific and supportive signs, and quantitative parameters in the grading of aortic regurgitation severity[]
Mild
Moderate
Severe
Specific signs for AR severity
Central Jet, width < 25% of LVOTς
Vena contracta < 0.3 cmς
No or brief early diastolic flow reversal in descending aorta
Signs of AR>mild present but no criteria for severe AR
Central Jet, width ≥ 65% of LVOTς
Vena contracta > 0.6cmς
Supportive signs
Pressure half-time > 500 ms
Normal LV size∗
Intermediate values
Pressure half-time < 200 ms
Holodiastolic aortic flow reversal in descending aorta
Moderate or greater LV enlargement∗∗
Quantitative parametersψ
R Vol, ml/beat
< 30
30-44
45-59
≥ 60
RF %
< 30
30-39
40-49
≥ 50
EROA, cm2
< 0.10
0.10-0.19
0.20-0.29
≥ 0.30
AR, Aortic regurgitation; EROA, effective regurgitant orifice area; LV, left ventricle; LVOT, left ventricular outflow tract; R Vol, regurgitant volume; RF, regurgitant fraction.
∗ LV size applied only to chronic lesions. Normal 2D measurements: LV minor-axis ≤ 2.8 cm/m2, LV end-diastolic volume ≤ 82 ml/m2 (2).
ς At a Nyquist limit of 50–60 cm/s.
∗∗ In the absence of other etiologies of LV dilatation.
ψ Quantitative parameters can help sub-classify the moderate regurgitation group into mild-to-moderate and moderate-to-severe regurgitation as shown.
Mitral regurgitation - severity
Application of specific and supportive signs, and quantitative parameters in the grading of mitral regurgitation severity[]
Mild
Moderate
Severe
Specific signs of severity
Small central jet <4 cm2 or <20% of LA areaψ
Vena contracta width <0.3 cm
No or minimal flow convergence
Signs of MR>mild present, but no criteria for severe MR
Vena contracta width ≥ 0.7cm with large central MR jet (area < 40% of LA) or with a wall-impinging jet of any size, swirling in LAψ
Large flow convergenceς
Systolic reversal in pulmonary veins
Prominent flail MV leaflet or ruptured papillary muscle
Supportive signs
Systolic dominant flow in pulmonary veins
A-wave dominant mitral inflowΦ
Soft density, parabolic CW Doppler MR signal
Normal LV size∗
Intermediate signs/findings
Dense, triangular CW Doppler MR jet
E-wave dominant mitral inflow (E >1.2 m/s)Φ Enlarged LV and LA size∗∗, (particularly when normal LV function is present).
Quantitative parametersφ
R Vol (ml/beat)
< 30
30-44
45-59
≥ 60
RF (%)
< 30
30-39
40-49
≥ 50
EROA (cm2)
< 0.20
0.20-0.29
0.30-0.39
≥ 0.40
CW, Continuous wave; EROA, effective regurgitant orifice area; LA, left atrium; LV, left ventricle; MV, mitral valve; MR, mitral regurgitation; R Vol, regurgitant volume; RF, regurgitant fraction.
∗ LV size applied only to chronic lesions. Normal 2D measurements: LV minor axis ≤ 2.8 cm/m2, LV end-diastolic volume ≤ 82 ml/m2, maximal LA antero-posterior diameter ≤ 2.8 cm/m2, maximal LA volume ≤ 36 ml/m2 (2;33;35).
∗∗ In the absence of other etiologies of LV and LA dilatation and acute MR.
ψ At a Nyquist limit of 50-60 cm/s.
Φ Usually above 50 years of age or in conditions of impaired relaxation, in the absence of mitral stenosis or other causes of elevated LA pressure.
ς Minimal and large flow convergence defined as a flow convergence radius < 0.4 cm and ≤ 0.9 cm for central jets, respectively, with a baseline shift at a Nyquist of 40 cm/s; Cut-offs for eccentric jets are higher, and should be angle corrected (see text).
φ Quantitative parameters can help sub-classify the moderate regurgitation group into mild-to-moderate and moderate-to-severe as shown.
Mitral stenosis - severity
Recommendations for classification of mitral stenosis severity[]
Mild
Moderate
Severe
Specific findings
Valve area (cm2)
>1.5
1.0-1.5
<1.0
Supportive findings
Mean gradient (mmHg)a
<5
5-10
>10
Pulmonary artery pressure (mmHg)
<30
30-50
>50
aAt heart rates between 60 and 80 bpm and in sinus rhythm.
Mitral valve stenosis - Wilkins score
Assessment of mitral valve anatomy according to the Wilkins score[]
Grade
Mobility
Thickening
Calcification
Subvalvular Thickening
1
Highly mobile valve with only leaflet tips restricted
Leaflets near normal in thickness (4-5 mm)
A single area of increased echo brightness
Minimal thickening just below the mitral leaflets
2
Leaflet mid and base portions have normal mobility
Midleaflets normal, considerable thickening of margins (5-8 mm)
Scattered areas of brightness confined to leaflet margins
Thickening of chordal structures extending to one-third of the chordal length
3
Valve continues to move forward in diastole, mainly from the base
Thickening extending through the entire leaflet (5-8mm)
Brightness extending into the mid-portions of the leaflets
Thickening extended to distal third of the chords
4
No or minimal forward movement of the leaflets in diastole
Considerable thickening of all leaflet tissue (>8-10mm)
Extensive brightness throughout much of the leaflet tissue
Extensive thickening and shortening of all chordal structures extending down to the papillary muscles
The total score is the sum of the four items and ranges between 4 and 16.
Mitral stenosis - routine measurements
Recommendations for data recording and measurement in routine use for mitral stenosis quantitation[]
Data element
Recording
Measurement
Planimetry
- 2D parasternal short-axis view
- contour of the inner mitral orifice
- determine the smallest orifice by scanning from apex to base
- include commissures when opened
- positioning of measurement plan can be oriented by 3D echo
- in mid-diastole (use cine-loop)
- lowest gain setting to visualize the whole mitral orifice
- average measurements if atrial fibrillation
Mitral flow
- continuous-wave Doppler
- mean gradient from the traced contour of the diastolic mitral flow
- apical windows often suitable (optimize intercept angle)
- pressure half-time from the descending sLope of the E-wave (mid-diastole slope if not linear)
- adjust gain setting to obtain well-defined flow contour
- average measurements if atrial fibrillation
Systolic pulmonary artery pressure
- continuous-wave Doppler
- maximum velocity of tricuspid regurgitant flow
- multiple acoustic windows to optimize intercept angle
- estimation of right atrial pressure according to inferior vena cava diameter
Valve anatomy
- parasternal short-axis view
- valve thickness (maximum and heterogeneity) - commissural fusion - extension and location of localized bright zones (fibrous nodutes or calcification)
Teacode 1.0 game. Click on any of the 'Translated Content' cells to edit the value.' NOTE Once translated, to set the site default language go to the area.' , 'managelanguagesintro1':'Select a language to manage. , 'languagekey':'Language Key', 'defaultcontent':'Default Content', 'translatedcontent':'Translated Content', 'nochangesindemomode':'Error Changes to this section can not be made within demo mode.'
- parasternal long-axis view
- valve thickness - extension of calcification - valve pliability - subvalvular apparatus (chordal thickening, fusion, or shortening)
- apical two-chamber view
- subvalvular apparatus (chordal thickening, fusion, or shortening)
Detail each component and summarize in a score
Tricuspid regurgitation - severity
Findings 2.0.4 For Windows
Echocardiographic and Doppler parameters used in grading tricuspid regurgitation severity[]
Parameter
Mild
Moderate
Severe
Tricuspid valve
Usually normal
Normal or abnormal
Abnormal/Flail leaflet/Poor coaptation
RV/RA/IVC size
Normal∗
Normal or dilated
Usually dilated∗∗
Jet area-central jets (cm2)§
< 5
5-10
> 10
VC width (cm)Φ
Not defined
Not defined, but < 0.7
> 0.7
PISA radius (cm)ψ
≤ 0.5
0.6-0.9
> 0.9
Jet density and contour–CW
Soft and parabolic
Dense, variable contour
Dense, triangular with early peaking
Hepatic vein flow†
Systolic dominance
Systolic blunting
Systolic reversal
CW, Continuous wave Doppler; IVC, inferior vena cava; RA, right atrium; RV, right ventricle; VC, vena contracta width.
∗ Unless there are other reasons for RA or RV dilation. Normal 2D measurements from the apical 4-chamber view: RV medio-lateral end-diastolic dimension ≤ 4.3 cm, RV end-diastolic area ≤ 35.5 cm2, maximal RA medio-lateral and supero-inferior dimensions ≤ 4.6 cm and 4.9 cm respectively, maximal RA volume ≤ 33 ml/m2(35;89).
∗∗ Exception: acute TR.
§ At a Nyquist limit of 50-60 cm/s. Not valid in eccentric jets. Jet area is not recommended as the sole parameter of TR severity due to its dependence onhemodynamic and technical factors.
Φ At a Nyquist limit of 50-60 cm/s.
ψ Baseline shift with Nyquist limit of 28 cm/s.
† Other conditions may cause systolic blunting (eg. atrial fibrillation, elevated RA pressure).
Tricuspid stenosis - severity
Findings indicative of haemodynamically significant tricuspid stenosis[]
Specific findings
Mean pressure gradient
≥5 mmHg
Inflow time-velocity integral
>60 cm
T1/2
≥190 ms
Valve area by continuity equationa
≤1 cm2
Supportive findings
Enlarged right atrium ≥moderate
DHated inferior vena cava
aStroke volume derived from left or right ventricular outflow. In the presence of more than mild TR, the derived valve area will be underestimated. Nevertheless, a value ≤1 cm2 implies a significant haemodynamic burden imposed by the combined lesion.
Pulmonary regurgitaion - severity
Echocardiographic and Doppler parameters used in grading pulmonary regurgitation severity[]
Parameter
Mild
Moderate
Severe
Pulmonic valve
Normal
Normal or abnormal
Abnormal
RV size
Normal∗
Normal or dilated
Dilated
Jet size by color Doppler§
Thin (usually < 10 mm in length) with a narrow origin
Intermediate
Usually large, with a wide origin; May be brief in duration
Jet density and deceleration rate –CW†
Soft; Slow deceleration
Dense; variable deceleration
Dense; steep deceleration, early termination of diastolic flow
Pulmonic systolic flow compared to systemic flow –PWφ
Slightly increased
Intermediate
Greatly increased
CW, Continuous wave Doppler; PR, pulmonic regurgitation; PW, pulsed wave Doppler; RA, right atrium; RF, regurgitant fraction; RV, right ventricle.
∗ Unless there are other reasons for RV enlargement. Normal 2D measurements from the apical 4-chamber view; RV medio-lateral end-diastolic dimension ≤ 4.3 cm, RV end-diastolic area ≤ 35.5 cm2(89).
∗∗ Exception: acute PR
§ At a Nyquist limit of 50-60 cm/s.
φ Cut-off values for regurgitant volume and fraction are not well validated.
† Steep deceleration is not specific for severe PR.
Pulmonary stenosis - severity
Grading of pulmonary stenosis[]
Mild
Moderate
Severe
Peak velocity (m/s)
<3
3-4
>4
Peak gradient (mmHg)
<36
36-64
>64
Click on the reference to link directly to the manuscript
Version 13.0.3:Note: Now requires OS X 10.9 or later running on a 64-bit Intel processorNote: Version 13 is a paid upgrade from previous versions. Bookends 13.0.3. Also, with automatic searches of PubMed, you can discover articles as soon as they’re published.
Findings 2.0.4 Show
Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M, American Society of Echocardiography., and European Association of Echocardiography. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009 Jan;22(1):1-23; quiz 101-2.DOI:10.1016/j.echo.2008.11.029 PubMed ID:19130998 HubMed[ASEVS]
Vahanian A, Baumgartner H, Bax J, Butchart E, Dion R, Filippatos G, Flachskampf F, Hall R, Iung B, Kasprzak J, Nataf P, Tornos P, Torracca L, Wenink A, Task Force on the Management of Valvular Hearth Disease of the European Society of Cardiology., and ESC Committee for Practice Guidelines. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J. 2007 Jan;28(2):230-68.DOI:10.1093/eurheartj/ehl428 PubMed ID:17259184 HubMed[ESCAS]
Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ, and American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003 Jul;16(7):777-802.DOI:10.1016/S0894-7317(03)00335-3 PubMed ID:12835667 HubMed[ASERE]
Wilkins GT, Weyman AE, Abascal VM, Block PC, and Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988 Oct;60(4):299-308.DOI:10.1136/hrt.60.4.299 PubMed ID:3190958 HubMed[Wilkins]
Foale R, Nihoyannopoulos P, McKenna W, Kleinebenne A, Nadazdin A, Rowland E, and Smith G. Echocardiographic measurement of the normal adult right ventricle. Br Heart J. 1986 Jul;56(1):33-44.DOI:10.1136/hrt.56.1.33 PubMed ID:3730205 HubMed[Foale]
ISBN:0812112075[Weyman]
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W, American Society of Echocardiography's Nomenclature and Standards Committee., Task Force on Chamber Quantification., American College of Cardiology Echocardiography Committee., American Heart Association., and European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr. 2006 Mar;7(2):79-108.DOI:10.1016/j.euje.2005.12.014 PubMed ID:16458610 HubMed[ASE]
Bonow RO, Carabello BA, Chatterjee K, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O'Rourke RA, Otto CM, Shah PM, Shanewise JS, and American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008 Sep 23;52(13):e1-142.DOI:10.1016/j.jacc.2008.05.007 PubMed ID:18848134 HubMed[ACCAS]
Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, and Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009 Feb;22(2):107-33.DOI:10.1016/j.echo.2008.11.023 PubMed ID:19187853 HubMed[ASEDF]
ISBN:9031362352[Hamer]
Finding 2016
All Medline abstracts: PubMedHubMed
Finding 2016 W-2
Retrieved from 'http://www.echopedia.org/index.php?title=Classification_of_valve_stenosis_and_regurgitation&oldid=8720'